Skip to main content

Cache: DevOps pre-state learning


In-memory Caches

An in-memory cache removes the performance delays when an application built on a disk-based database must retrieve data from a disk before processing. Reading data from memory is faster than from the disk. In-memory caching avoids latency and improves online application performance.


CDN

A content delivery network (CDN) is a geographically distributed group of servers that caches content close to end users. A CDN allows for the quick transfer of assets needed for loading Internet content, including HTML pages, JavaScript files, stylesheets, images, and videos.


Cache Invalidation

Cache invalidation is the process of invalidating cache by removing data from a system’s cache when that data is no longer valid or useful. When a change is made to the original data, such as updating profile information, the corresponding cached files should be invalidated to ensure that the updated data is reflected.


Write-through Cache

Write-through is a storage method in which data is written into the cache and the corresponding main memory location at the same time. This is used when there are no frequent writes to the cache.


Write-back Cache

Write-back cache is a method where write operations to the cache are not immediately reflected on the main memory. Instead, the cache marks the modified data as dirty and updates the main memory only when the cache line is replaced or evicted. It prioritizes immediate response to the write operation, deferring the actual storage write to a later, more opportune time.


Cache Hit Ratio

Cache hit rate, known also as cache hit ratio, is a measure of the effectiveness of a cache, which is a temporary storage area for frequently accessed data. The cache hit rate is the percentage of requests for data that can be served by the cache, rather than having to be retrieved from the origin server.

Cache Hit Ratio Formula: {Cache Hits / (Cache Hits + Cache Misses)} * 100%

Comments

Popular posts from this blog

Poridhi: Stacks & Queues

  Stacks & Queues related problems: This collection of solutions tackles three classic problems often encountered in technical interviews and competitive programming. The Valid Parentheses problem checks whether a string has properly matched and ordered brackets using a stack. The Sliding Window Maximum efficiently finds the maximum value in every window of size k across an array using a deque, a popular sliding window pattern that ensures optimal performance. The Stock Span Problem simulates a real-world stock analysis scenario and calculates the number of consecutive days before today for which the stock price was less than or equal to today's, also utilizing a stack for efficient computation. These problems test understanding of stacks, queues, and sliding window techniques. ✅ Valid Parentheses def isValid ( s: str ) -> bool : stack = [] mapping = { ')' : '(' , '}' : '{' , ']' : '[' } for char in s: ...

Data Recovery: DevOps pre-state learning

  Data Backup Data backup is the practice of copying data from a primary to a secondary location, to protect it in case of equipment failure, cyberattack, natural disaster or other data loss events. This can include documents, media files, configuration files, machine images, operating systems, and registry files. Essentially, any data that we want to preserve can be stored as backup data. Data Restore Data restore is the process of copying backup data from secondary storage and restoring it to its original location or a new location. A restore is performed to return data that has been lost, stolen or damaged to its original condition or to move data to a new location. Pilot Light A pilot light approach minimizes the ongoing cost of disaster recovery by minimizing the active resources, and simplifies recovery at the time of a disaster because the core infrastructure requirements are all in place. Warm Standby The warm standby approach involves ensuring that there is a scaled down, ...

Poridhi: Basic Programming & Math

Basic Programming and math related problems: Extracting digits means breaking a number like 1234 into [1, 2, 3, 4], often using string conversion or modulo/division. Counting digits involves finding how many digits are in a number using length of a string or repeated division. Reversing an integer flips its digits (e.g., 123 becomes 321), with care for signs and 32-bit limits. A palindrome number reads the same forward and backward, often checked by comparing the original and reversed number. Armstrong numbers are those equal to the sum of their digits each raised to the number of digits, like 153 = 1³ + 5³ + 3³. To find the sum of all divisors of a number, loop through integers and check which divide the number without a remainder. Prime numbers are only divisible by 1 and themselves, and checking up to the square root is efficient. GCD, the greatest common divisor of two numbers, can be found using a simple loop or more efficiently with the Euclidean algorithm, which uses repeated mo...